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At the present time, optical elements with controllable characteristics are widely used in various fields of 
engineering [1]. Among these systems of adaptable optics are bimorph mirrors made of piezoelectric ceramics. 
The deformations of bimorph rectangular mirrors were studied in [2--4]. 

The present study deals with a circular mirror consisting of a piezoelectric ceramic layer coupled to a 
metal layer with a reflecting vaporized coating. Henceforth, this kind of mirror is called a semipassive bimorph. 
The piezoelectric element is covered by a thin sectionalized electrode coating. To change the mirror shape, 
control voltages are supplied to various sections. Here the problem of opt imum control arises to determine 
values of the voltages that  would make it possible to approximate the specified shape of the mirror with 
sufficient effectiveness. A similar statement of the problem was considered in [5], but in terms of a less strict 
approach. 

1. We consider a bimorph plate consisting of a piezoelectric ceramics layer with a thickness of hi 
bonded to a metal  layer with a thickness of h2. We refer the plate to a Cartesian reference system O X l X 2 X  3 as  

shown in Fig. 1. We assume that  the deformation of the plate occurs owing to the voltage v(xl, x2) applied to 
an infinitely thin electrode covering the boundary z3 = hi. In addition, the electrode covering the boundary 
x3 = 0 is shorted. The results of the asymptotic analysis of equilibrium of an inhomogeneous electro-elastic 
slab carried out in [6] indicate the possibility of using the Kirchhoff hypotheses here, and similarly to [7] one 
obtains the following expression for the bending moments M0": 

Mll  = -D(w,11 +vow,22 ) - -  a V ,  M22 = -D(vow,ll +w,22 ) - exv, M12 = - D ( 1  - go)w,12, 

where the effective flexural rigidity D, Poisson's ratio vo, and the control coefficient a are defined by the 
following formulas: 

1 3 D22 D = ~(h lBl l (1  +/3) + h3All) - 1 ~(B22+A22) ,  v 0 =  D ' 

1 3 1 
322 ="~(hlBll(V +/3) + Vmh3All) + ~(B22 - A22), 

1 ( Bxah21(1 + v ) -  Aalh22(1 + Um)~ 
~ = - -  d h l - B l l h l (  l +~))~Allh2(l +vm)}, 

A22 = (Bllh2(1 + v) - Allh2(1 + Vm)) 2 
Bllh l (1  + v) + Allh2(1 + vm) ' 

B22 = (Bllh2(1 - v) - Allh2(1 - vm)) 2 

Bl lh l (1  - v) + Allh2(1 - Vm) ' 
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Here sij and s~ are the elastic flexibilities of the ceramics and the metal respectively, P33 is the permittivity, 
d31 is the piezoelectric coefficient, and w = W(Xl, x2) is the defection of the plate surface x3 = 0. Using the 
equilibrium equation of the plate 

Mal,al + 2M12,a2 + M22,22 = 0, 

we obtain the equation of bending of a semipassive bimorph, 

DA2w = - a A v ,  (1.1) 

which has the same form as the classical equation of bending of thin elastic plates with effective flexural 
rigidity D. Here, the expression -c~Av appears as transverse load q. 

The boundary conditions at the plate contour F for Eq. (1.1) are defined by the physical supporting 
conditions and the kinematic Kirchhoff hypotheses [6] and have the same form as the known boundary 
conditions for bending of elastic plates. Namely, for the fixed-end conditions w = aw/an  = 0, at F for the 
hinged support w = 0 and M , ,  = 0, and, finally, for the free edge 

Ov 
M , , = O ,  Q*=Q+aM""OT =0 ,  Q,=-D-~nCO ( A w ) - a ~ n = 0 ,  (1.2) 

where n is the unit vector normal to F, v is the unit tangent vector, and Qn is the transverse shear force. 

2. We consider a circular bimorph plate of radius a with a free edge. In this case it is convenient to study 
the boundary-value problem of bending using the polar coordinates p and 0 (Xl = ap cos 0, x2 = ap sin 0, and 
O < p ~ < l ) .  

We write the boundary-value problem (1.1) and (1.2) in dimensionless form: 

A2w = AU, klw = U, p = 1, k2w = U,p , p = 1. (2.1) 

Here A is the Laplacian operator and the differential expressions kl and k2 are defined in the polar coordinate 
system by the relations 

CO2 1 CO - - a - ~  
kl = ~p2 + v0 + p2 ' 

eta 2 w 
U = - ~ v ,  W = 

Dwo wo 

(w0 is a characteristic defection of the plate). 
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Fig. 2 

We divide the circle p ~ 1 into 2N + 1 regions (sections) by the circumferences p = pl and p = p2 
(0 < pz < p2 < 1) and the segments of the rays 0 = kAO (A0 = 2~r/N, k = O, 1 , . . . ,  N - 1) with pl ~< p ~ 1. 
As a result, the plate will be divided into a circular region, s0 and 2N sector regions sn, n = 1, 2 , . . . ,  2N 
(Fig. 2). Let us construct the solution to problem (2.1) and (2.2) for the piecewise constant function U, which 
corresponds to the above sectioning of the plate. 

We assume the value of the function U to be constant in each of the regions sk: 
2N 

u(p,o) = ~ Ukx(sk) 
k=0 

(Ok is a constant value of U in the region sk and X(Sk) is the characteristic function of the region sk). 
Using a Fourier series expansion of the unknown function W with respect to 0, one obtains the 

expression 
2N 

W(p, O) = ~_, UkWk(p, 0), (2.3) 
k=-3 

where 

U-3= Ao, U - 2 =  A~ 1), U-z= A~ 2), W-a= 1, W - 2 =  pcosO, W-z = psinO, 

1 ~Pl Pl--21--) 

w0 = ~ ~le~p ~ + 1 p~lne, 
g 

wk(:,o) = wo~ + ~ N~)(:)rk.(o) 

Wk(P, O) = W(2)(P) + E W(n2I(p)Tka(O) 
n-~l 

Tkn(O) = cos nOSkn + sin nOCk,~, Sk,~ = sin nOk - sin nOk-z, 
2~r 

Ck,, = cos nOk-1 - cos nOk, 0 = kAO = k--~. 

P ~< Pl, 

P>~ Pz, 

(1 < k ~< N), 

(N < k ~ 2N), 

(2.4) 

We note that  W (k) (p) are the known functions of p; because of their cumbersome form they are not 
given here. 

3. The obtained solution W(p, 8) to the bending problem may be considered as a function depending 
on the Uk value, i.e., 

W = W(p, O, U-a, U-2 , . . . ,  U2~v). 

In this case, the dependence of the deflection W on Uk defined by (2.3) makes it possible to investigate the 
practically important problem of optimization of the shape of a semipassive bimorph. 
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TABLE 1 

-3 
-2  
-1 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

k --V-- 
Jk �9 103 

-0.78 
0 
0 

-26.5 
-0.2 
-0.2 
-0.2 
-0.2 
-0.2 
-0.2 
-0.2 
-0.2 
36.0 
36.0 
36.0 
36.0 
36.0 
36.0 
36.0 
36.0 

Suppose that it is required to provide the deflection form of a bimorph plate close to a certain specified 
continuously differentiable function F(p, O) by choosing the control voltages Uk. We expand this function into 
a generalized Fourier series in a system of Zernike trigonometric polynomials Zk(p, O) [8] forming the basis in 
L2(S): 

Z I = I ,  Z2=2pcos0,  Z3=2psin0,  Z4=2p  2 - 1 ,  Zs=p2s in20 ,  . . . .  

The expansion has the form 

oo 

F(p,O) = wo ,,kZk(p,O). 
k = l  

Next, we construct the functional 

1/( 
J(V-3, V-2,. . . ,  V22v) = ~ W -  ~_, akZk dS, (3.1) 

S k = l  

defining the deviation of the deflection W from the function F (S being the area of the plate and W = ~akWk). 
The values of U,n corresponding to the minimum value of functional (3.1) will be called the optimal 

values. Using the superposition principle, we express the control voltages Um in the form 
co 

um= akV m, 
k=l 

where Ukm is the control voltage at the ruth electrode which approximates the kth Zernike polynomial and is 
determined from the following algebraic system: 
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2N 

Z: v,,...,,,=/,,,,, (3.2) 
n = - - 3  S S 

In addition, Uk,n corresponds to the minimum value of the kth residual functional 

= U,.kA.,), 
.9 m = - 3  

characterizing the mean-square deviation of the form of the plate surface from the kth Zernike polynomial. 
Using the minimum condition, we obtain the following linear algebraic system of equations: 

2N ~ 

1.=--3 S k = l  S 

System (3.2) posseses a number of effective computational properties, i.e., the matrix Brim is symmetrical and 
non-negative definite, and does not depend on the form of the function F. It should also be noted that the 
integrals appearing in (3.2) are easy to calculate analytically with respect to the angle O using formulas (2.4), 
so that the coefficients of the matrix and the components of the vector on the right-hand side of the system 
are expressed only in terms of the integrals with respect to the radial variable p. 

Optimization defining the dimensionless sectioning radii pa and p2 for the basic 17-electrode coating is 
carried out. The values pa = 0.4 and p2 = 0.7 are found and the control voltages Un (n = -3 ,  - 2 , . . .  , 16) are 
calculated which are listed in Table 1, where the translational displacement of the plate U-3 and the rotations 
of the plate U-2 and U-1 about the coordinate axes correspond to the values n = -3 ,  -2 ,  -1 .  Here, k is the 
Zernike polynomial number and n is the electrode number. We give in Table 1 the data starting with k = 4 
only, since the polynomials Zk for k = 1, 2, and 3 correspond to the rigid body displacements of the plate. 

Note that the results for k = 9 and k = 10 are not given in Table 1, since the corresponding Zernike 
polynomials proportional to sin 30 and cos 30 cannot be approximated satisfactorily for the chosen sectioning 
(N = 8). To obtain a good approximation of these polynomials, one should take N = 6, 9, or 12. 
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